The Wildifife Fencing Guide Amphibians, Reptiles \& Small Mammals

A global handbook for biologists, engineers \& contractors working on conservation, construction \& linear infrastructure projects.

VERSION 1.1

Introduction.

ACKNOWLEDGEMENTS

解 for reptie, amphibian and small mammal fencing. It combines and builds upon information shared in relevant information is published.

We would like to thank all of the people who have shared their research and experiences with wildife fencing from across the world especially those we have had the pleasure of engaging in conversations and working with from the ANET, IENE, NETWC \& ICOET communites. Not forgetting others we have met through The Wildlife Society, Canadian Herpetological Society, Desert Tortoise Council and other general project inquiries. Your openness and enthusiasm is imperative to improve our collective approach to improving wildlife fencing and mitigation practices.

The primary authors of this document are Steve Béga, Tim Harris \& Dean Swensson.
We are particularly gratefur for the photos and comments from Kari Gunson, Jerry Roe \& Iravis
McCleary along with other photo contributions from Barb Beasley, Carlos Milburn-Rodriguez, Travis McCleary, Jerry Roe, John Mulder, Mark Backus, Mabyn Armstrong, Tony Ashton, Caroline Zank, Holly Anderson, Joe Carter, Tricia Stewart \& Royal Botanic Gardens Cranbourne
Design, illustrations and specification drawings by Steve Béga

SUGGESTED CITATION

The Wildlife Fencing Guide: Amphibians, Reptiles \& Small Mammals. 2021. Version 1.
https://www.wild lifefencing.com/

ISBN: 978-1-7399628-0-7

COVER PHOTO

iens) on paved highway.
Credit: Dean Swensso

CONTAC

infowild liffencing.con
began my career as a wild life biologist in 1998 and formed an ecological consulancy that ensured clients adhered to legislation that protected wildilfe and habitats from the impacts of fragmentation and degradation due to development, construction and infrastructure.

During this time I have installed, monitored and repaired countless fences that were implemented to contain, exclude, or guide wildilfe in the interest of research and conservation.

After realizing that the generic fencing methods and materials available to us off the shelf during my early career were not adequately providing the functionality or durability we needed for our unique purposes, set off on a journey to develop better materials and methods of installation that were purposely desgined for wild life.

Shortly after, Animex Fencing was born
After 10 years operating solely in Europe we began recieving calls from other countries where biologists and contractors expressed the same frustrations and limitations as a result of using generic mixed fencing materials that we had years previously.

This led us to investigate the potential applications and adjustments we would need to make to enable our encing products and installation methods useful for other species and practitioners across the world.

To date we are proud to have worked on numerous projects with various partners targeting multiple species. Every project has taught us valuable lessons that has enabled us to continually improve ou approach and products.
This wild life fencing guide is the culmination of this work to date and we are excited to share this with you as we continue to develop our approach to protecting wild llife and habitats.

As a digital document it enables us to continually update the information presented within and ensure you receive the most accurate guidance when fencing for reptiles, amphibians and small mammals.
f you have any comments or information to add then we would love to hear from you..

Contents.

SECTION I

Wildlife Fencing Matters.

Wildlife exclusion fencing has been used for many years to exclude and direct a multitude of species away from areas designated for construction, roads, utilities and other infrastructure needed to facilitate growing human populations.
Along with many other factors wild life fencing has been proven to be an effective mitigation tool for long and short-term projects. Unfortunately up until now the ambigivy sur ill ineffectively protected.

To help improve our collective approach we have compiled a comprehensive wild life fencing handbook that you can trust and utilize on any future projects to help usher us into a new era of wild life protection

Knowledge of how animals interact with their environment is imperative the success of any mitigation or management measures and this is especially is made based on what is cheap and available rather than selecting solutions that are specifically designed for use with wild life

Understanding

Scientific studies on the effectiveness of mitigation measures often look at projects on a large impac and landscape scale. These studies frequently assess effectiveness of mitigation by counting anima overall impact assessments on mortality rate changes.

Very rarely do these studies go further to assess if the choice of fencing materials used could have an even greater influence on mitigation effectiveness by altering animal behavior. The chosen fencing material may put animals at a higher risk or positively improve the requency of safe crossings or capture rates, based on how the animals interact with the fence.

Growing amounts of anecdotal observations of animals pacing, climbing and becoming stuck in fencing has ed scientists to begin researching what happens when animals come into contact with these barriers. The aim s to gain a better understanding of what materials and designs are the least harmful and most effective.

It is this research that has informed this handbook and inspired us to create a detailed range of fencing designs that can be confidently applied to any situation.

Although every species of animal has its own unique biological traits and therefore will interact with fences in different ways, it is agreed that the following factors are common across all animal groups and considered the highest risk factors when using fencing:

Pacing Behaviors pg. 8
Entanglement Risk pg. 10
Climb-ability pg. 12

Image Sources:
A. https://ansuseye.wordpress.com/2017/05/17/turtle attention B. https://imgur.com/aallery/Ph8vk C. https://splatfrogtunnel.blogspot.com/2014/08/new-fences-to-guide-amphibians-to-tunnel.html

Pacing.

Animals pacing along mesh fences are commonly observed in captivity and this behavior has also been recorded for wild reptiles and amphibians when they encounter materials with a high transparency and percentage of open area.

The risk this poses to wild animals in comparison to those in captivity is very differen Increased pacing behaviors in the wild can cause animals to overheat and perish as well as unnecessarily expose themselves to predation. It can even encourage them to interact with fences more frequently in ways which could lead to entanglement or being able to climb over the top.

We also don't truly understand if reptiles and amphibians can see or sense materials such as mesh or hardware cloth due to their composition of thin strands of material and a high transparency. Therefore, when a fence is designed to deter or guide animals to a safe location or wildlife crossing it is important to ensure the right fence material and design is chosen to optimize its intended functionality
Solid fences with a high opacity have been proven to significantly reduce pacing behaviors of animals and animals have been observed to move much faster along them or move quickly away into the safety of nearby habitat when compared to mesh and wire materials.

Key Links:

https://wildlife.org/bad-fences-may-lock-wildlife-in-dangerous-highway-corridors/ https://www.researchgate.net/journal/Biological-Conservation-0006-3207 https://www.usgs.gov/centers/werc/science/reptile-and-amphibian-road-ecology-0?qt-science_center_objects

Snapping Turtle clawing at metal mesh as it walks along fence line. (1/4in hardware cloth)

Traditional USFWS specificed 1 in $\times 2$ in wire fencing for Mojave Tortoise in USA

Lightweight plastic mesh with a high transparency and percentage of open area

Carpet python passing through chainlink in Quensland Australia
\qquad

Entanglement.

Nearly all mixed constructional materials such as silt fence, mesh, shade and hardware cloth pose a high risk of entanglement to wild life.

These products are comprised of multiple strands of material that can act as nets inadvertently catching and entrapping sensitive wild life rather than protecting it.
Snakes are at the highest risk of entanglement as material strands often become
lodged under scales making it impossible for them to move back and forth safely,
and resulting in them becoming stuck and slowly perishing.
The risk factor can vary over time for different materials with some incoproating a high percentage of open areas (gaps or holes) such as mesh and hardware cloth This poses an immediate risk whereas, shade cloth and silt fencing will pose an increased risk over time as the material breaks down. In addition, many of the cheaper materials used for temporary applications are rarely recovered after a project and are left to pollute the landscape causing further unknown and avoidable
damage. The weather resistance of some metal mesh fencing (hardware cloths) is damage. The weather resistance of some metal mesh fencing (hardware cloths) is also difficult to predict, as origins of manufacture can be hard to confirm.
As previously mentioned in the PACING section, we don't truly understand if reptiles and amphibians can see or sense materials with a high transparency such as mesh or silt fencing. This may be the reason why they have been observed to exert a great amount of effort touching such materials in comparison to solid materials with a higher opacity.

Silt fencing obliterated after vegetation clearance along a roadside in Canada

Painted Turtle caught in chainlink wire in gabion wall, Canada

Natterjack Toad stuck in metal mesh, UK (hardware cloth)

Wire mesh, silt fencing \& orange plastic mesh deteriorating on site boundary, USA

Climbing.

If animals are able to climb or breach a fence it renders it redundant and must be avoided at all costs.

Anplibians, reptiles and small mammals have the ability to traverse their habitats in intricate ways and this must be seriously contides are able to utilize their limbs to climb fence materials whereas snakes commonly distribute their weight to navigate creases or excess fixings and fastenings to get over a barrier.

Solid barriers are much more difficult to climb than multi-strand, woven and mesh style fences for most species, as the latter replicate ladders.
The shape of the fence also plays an important part as different species will find it more difficult to traverse an arching or overhanging fence than a vertical fence without an anti-climb lip.
As well as the material choice and shape, maintenance is also a key factor in the suitability and longevity of a fence. If vegetation is not kept low around a fenc nals ma use fencing than it is in solid barriers.

Frog climbing plastic mesh
® Barb Beasey

Newt climbing polythene

Snapping turtle climbing wire mesh

Frog climbing silt fencing

SECTION II

Selecting the best fencing.

Win growing amounts of scientific research and expanding aneccotal information, we fencing decisions for your projectits).

Major factors to consider when adopting a wildilfe fencing solution will undoubtedly include most, if not all of the following:

Effectiveness
 - Cost

Maintenance
Longevity

Effectiveness

Fencing materials are often selected based on their availability and price rather than their sensitive wild life the barrier is being installed for in the first place and frequently becomes more hazardous than helpful

Some risk factors that sub-optimal materials create can allow animals to climb, risk entangling as well as encouraging unnatural pacing behaviors. It is therefore important to select fencing materials with a high opacity and avoid products made from fibrous or mesh materias.

Maintenance

Overlooking the durability and maintenance requirements of fencing materials can often be extremely expensive. It is important to understand your newly installed fence is effective after the finitial purchase to avoid costly surpises in the future.

Fibrous and mesh materials often require significant amounts of maintenance compared to solid materials such as plastic rolls or metal sheets.

Vegetation encroachment on mesh fences can be extremely difficult to remove and using weedwhackers often damages the fencing beyond repair.

Areas with heavy snowfall can also destory
lightweight fences posing a great risk to
hibernating animals which are often quick to move once it thaws

It is also advisable to use perforated materials in aquatic environments or areas with expected heavy rainfall to avoid pooling against the barrie

Cost

managenagets for environmental Is magenent or mitigation can be limited so it mportant to invest in long lasting products materialuce ongoing costs. Although some materials may be cheaper upfront, these fences have incredibly high maintenance costs and are therefore much more expensive overall due to replacment and repair needs Over the duration of a project compared to others. It is advised that you consider investing create big savings in the long ras Cheaper materials are often unrecoverable and therefore cause greater long-term harm to the environment Selecting more durable materials will allow you to recover and reuse the material, which will also further reduce landfill. disposal and environmental costs.

Longevity

Understanding the life expectancy of your fencing materials is imperative and can have fence's ability to safely exclude or protect wild life.

Selecting a cheaper material with a short shelf life for long-term projects will inherently incur greater costs for replacement and risk rendering the fencing redundant for unwanted periods

Comparatively, using overly heavy duty and expensive fences for short-term projects may not be an efficient use of budget and may cause unnecessary habitat disruptions during installation.

Optimal pg.16 Sub-optimal pg.20

AMX-T

SCORED PLASTIC (HDPE) Attach to existing ban

- Low maintenance

High opacity

AMX-SP \& AMX-T
 PERFORATED SCORED PLASTIC (HDPE)

> - Extremely durable - Attach to existing barriers - Low maintenance - High opacity

Optimal fencing examples.

AMX-SP \& AMX-
Scored perforated plastic (HDPE) Caltrans D7 Innovation Fair

Pre-formed metal
Various species

AMX-SP
Scored plastic (HDPE)
Attached to existing "Garrison" fencing

AMX-SP
Scored plastic (HDPE)
Attached to quardrail

- High Transparency

SNOW FENCING / WARNING BARRIER

- Torn \& ripped easily Animal entanglement
- High maintenance
- Climbable
- High Transparency

LIGHT WEIGHT POLYTHENE

High maintenance Climbable Torn \& ripped easily High Transparency

MID

MID

LOW

Low
<1 YEAR
HIGH

HIGH

10 YEARS

Sub-optimal fencing examples.

Polythene \& wooden posts
Various species

Plastic mesh
Various species

Shade cloth covering chain-link Various species

Hardware cloth / Metal mesh Various species

SECTION III

Standard
 Fencing Specifications.

Salamanders, Newts \& Toads ${ }_{\text {pg. } 28}$
Tortoises pg. 30
Snakes pg.32
Turtles pg. 34
Lizards ${ }_{\text {pg } .36}$
Frogs ${ }_{\text {pg. } 38}$
Small Mammals pg.40

Getting Started.

What makes a fence for small animals so unique?
This section provides a selection of detailed specifications that can be copied and included in project documentation such as tenders, reports and on-site training flyers.

These specifications have been designed to be used with the optimal materials identified in Optimal Fencing Materials pg. 16

Each specification refers to a code made up of "AMX" which stands for "Animal Exclusion" and a number including "40, 48 or 60" which refers to the material's height before being installed and having any top or bottom lips folded

SALAMANDERS \& NEWTS : AMX40 pg. 26

TOADS: AMX40 pg. 26
TORTOISES : AMX40 pg. 26
SNAKES : AMX40 pg26 AMX60 (LARGE) pg. 26
TURTLES : AMX40 pg. 26 AMX48 (LARGE) pg. 26
LIZARDS : AMX40 pq. 26 AMX48 (LARGE) pq. 26

FROGS : AMX48 pq. 26 AMX60 (LARGE) pq. 26
SMALL MAMMALS : AMX48 pq. 26 AMX60 (LARGE) pq. 26

It is also important to understand that although you many be considering a fence for a particular species, the chances are that there are many other species present that will be impacted by the fencing. All the specifications in this document consider multiple species applications but, if you are targeting multiple species specifically, you should choose the tallest of the recommended fences

Before looking at the detailed drawings it is important to understand some key aspects of wild life fencing for reptiles, amphibians and small mammals. We need to identify what makes them different from other fences aswell as highlighting important aspects that are key to making them effective.

Top Lip Design

Research shows that including a top "anti-climb lip" to fences increases their effectiveness for particular species. Although there is a common preference for using an "L" shaped lip, some research demonstrates that an upside down "U" shape lip may be more beneficial. Based on this information all drawings in this section will include a standard " U " shaped top lip comprising a $\mathbf{4 i n} \mathbf{(1 0} \mathbf{c m})$ top section with a $\mathbf{2 i n}(\mathbf{5 c m})$ downward element ($\mathbf{6 i n} \mathbf{/} \mathbf{1 5 0} \mathbf{m m}$ total). The exact size of this can be adapted if you feel it is appropriate for your project

Below Ground Depth \& Designs

there is growng concern that the shallowness of fences dug to eart contributes to fences being less effective. We have standardized all drawings to include a depth of $\mathbf{8 i n} \mathbf{(2 0 c m})$ with a 4in (10cm) bottom lip folded towards the direction animals are expected to encounter the fence This average depth and bottom lip can be adapted if you feel it is fence. Tris a for your project but should be done with caution Contractor appropriate for your project but should be done with caution. Contractors should be held accountable for trying to decrease trench depth and must ensure back fill is compacted appropriately. A shallow trench and lum back fill can allow animals to easily burrow under the fence and enter

Shelters

In some climates ambient temperature changes may occur along a fence line. Further research is needed to explore what effect this may have on animals but for good practice, shelters should be placed periodically along a fence to provide unexposed refuge areas. Our standard recommendations state shelters should be placed no greater than $\mathbf{3 0 f t} \mathbf{(1 0 m})$ apart. The exact spacing and size of the shelters can be adapted if it is appropriate for your project. Consideration should also be made to the color of the fence, however lighter colors degrade quicker than dark due to UV so always consult to determine which option is best for your projects needs.

Joining Sections

It is surprising how small gaps between overlapped fencing materials can allow for animals to get through or becomg entrapped. It is extremely important to make sure when connecting sections of through or becomg entrapped. It is extremely important to make sure when connecting sections of
fencing to each other or to other structures such as culverts, or crossings that there is a good seal.

Posts

Support post types have not been specified as these can vary but some common ones are T-posts \& various types of wooden posts (square, round, half round).

Timing

It is not advised to install fences during times when animals are anticipated to be within, or in close proximity to the working area. Considerations should also be made to material properties and installing during extreme hot or cold temperatures is not recommended.

Specifications:

Salamanders, Newts \& Toads

Species Examples:

- California Tiger Salamander
- Great Crested Newt
- Great Crested Newt
$\begin{array}{ll}\text { - } & \text { Spotted Salamander } \\ \text { - Jefferson's Salamander }\end{array}$
- Arroyo Toad
- Fowler's toad

SALAMANDERS
NEWTS \& TOADS: AMX 40
BASIC MATERIAL SIZE \& FEATURES pq. 42

Free-standing

AMX 40 : BELOW GROUND pg. 44 AMX 40 : ABOVE GROUND pg. 46

Attached

AMX 40 : GARRISON pg. 48 AMX 40 : CHAIN-LINK pg. 50 AMX 40 : LIVE STOCK.....pg. 52 AMX 40 : SECURITY BARRIERpg. 54 AMX $\mathbf{4 0}$: LARGE WILDLIFE pg. 56

Fixing \& Fastening AMX-T / AMX-SP : SCORED PLASTIC pg. 90 AMX-XP : PREFORMED METALpg. 92

Specifications:

TORTOISES: AMX 40

Tortoises

Threatened Mojave Desert Tortoises (Gopherus agassizII) and other Gopherus species face numerous threats, not least from collisions with vehicles as they attempt to cross highways traversing their territories and entrapment in trenches, pipework, and machinery on construction sites. Also, with the increase in solar power installations in desert habitats that are used by the tortoises, fencing is required to keep the animals out. An additional problem is that although exclusion fencing can successfully keep tortoises off construction sites and roads, some individuals have difficulties adjusting to new barriers and their body temperature rises - sometimes fatally - as they pace up and down the fencing in hot weathe

Fencing, along with other mitigation measures, such as underpasses, has been shown to reduce mortality without disrupting the animals' life cycle too much, but it has to be the right kind of fencing, installed with consideration for the animals' direction of movement. Otherwise, tortoises may be able to get through or over it - or they may perish trying to find a way through

Evidence provided by biologists and contractors in Nevada revealed that previously specified mesh fencing designed to exclude Mohave Desert Tortoises had been found to corrode within a few years of installation and posed risks to a variety of animals. Additionally, installation methods often damaged large areas of surrounding habitat.

Fencing can also be used to aid population assessment before the development of new construction sites.

- Desert Tortoise

Gopher Tortoise

- Hermann's Tortoise
- Texas Tortoise
- Greek Tortoise

Free-standing

AMX 40 : BELOW GROUND pg. 44 AMX 40 : ABOVE GROUND pg. 46
Attached
Suitable for temporary \& permanent
AMX $\mathbf{4 0}$: GARRISONpg. 48
AMX $\mathbf{4 0}$: CHAIN-LINKpg. 50
AMX $\mathbf{4 0}$: LIVE STOCK.....pg. 52
AMX $\mathbf{4 0}$: SECURITY BARRIER pg. 54
AMX $\mathbf{4 0}$: LARGE WILDLIFEpg. 56

Fixing \& Fastening
AMX-T / AMX-SP : SCORED PLASTIC pq. 90 AMX-XP : PREFORMED METALpg. 92

Specifications:

Snakes

Roads have been described as ecological traps for snakes. Since snakes are ectotherms, they need to obtain heat from their environment, so they are often attracted to the heat-retaining surfaces of highways. This increases the chances of them being killed by passing vehicles. When commuting snakes cross a road, some species become immobile in response to oncoming traffic, further increasing their chances of being hit. Additionally, snakes are potentially at risk of becoming trapped in foundation trenches, pipework, or machinery on poorly fenced construction sites

Wandering snakes are more susceptible than more sedentary species. Research has shown that gopher snakes, for example, suffer higher rates of road-kill than rattlesnakes. This is particularly true during two periods of the year: in spring or summer - depending on the species - adult males are more prone to wandering as they seek out females to mate with; in fall, juveniles often disperse from their natal site. In spring, snakes are most active during peak vehicle commuting periods, while in summer activity is restricted to the coolest parts of the day (earlier and later), when traffic volumes are less. Poorly fenced construction sites also hold many hazards for wandering snakes, especially since these often provide attractive locations for females to nest.

It is the responsibility of planning engineers to reduce the ecological impact of roads and construction sites and use mitigation measures as tools in ecological conservation. The right kind of exclusion fencing, particularly if installed well and used in conjunction with mitigation features such as eco-passages, can reduce snake road-kill and construction site mortality dramatically. Construction sites are potential death-traps for snakes, and the presence of venomous species is clearly unwelcome where workers are engaged in construction - hence the need for effective exclusion fencing.

Fencing can also be used to aid population assessment before the development of new construction sites.

Species Examples:

- San Fransisco Garter Snake
- Northern Pacific Rattlesnake
- Massasauga Rattlesnake
- Common European Adder
- Alameda Whipsnake

SMALL SNAKES: AMX 40
AMX 40 : BASIC MATERIAL SIZE \& FEATURESpq. 42

Free-standing

AMX 40 : BELOW GROUND pg. 44 AMX 40 : ABOVE GROUND pg. 46

Attached

AMX 40 : VARIOUS TYPES starting on pg. 48

LARGE SNAKES: AMX 60 AMX 60 : BASIC MATERIAL SIZE \& FEATURESpg. 74

Free-standing

AMX 60 : BELOW GROUND ...pg. 76 AMX 60 : ABOVE GROUND pg. 78

Attached AMX 60 : VARIOUS TYPES starting on pg. 80

Fixing \& Fastening
AMX-T / AMX-SP : SCORED PLASTIC pg. 90 AMX-XP : PREFORMED METAL................. pq. 92

Specifications:

Turtles

Roads and construction sites are hazardous locations for turtles. While their hardened shell (with a bony carapace above and a plastron below) is sufficient defence against most natural predators, it is no protection from passing motor vehicles or earth-moving equipment. Additionally, on poorly fenced construction sites they are at risk of becoming trapped or injured in trenches, pipework, and machinery.

It is not uncommon to see freshwater turtles alongside highways and tracks in spring, summer, and fall. They commute across roads and construction sites as they search for food, or for mating partners, and as they move from pool to pool. Being ectotherms ("coldblooded"), they are often attracted to the warmth of road surfaces. There, they will stop blooded"), they are often attracted to the warmth of road surfaces. There, they will stop
and retract into their shell in response to traffic. If commuting across a highway, they are usually slow-moving.

In the nesting season, female turtles are especially vulnerable, since they often dig into and lay their eggs in banks of gravel or sand on construction sites, highway shoulders, or gravel tracks. This is particularly true of sites near to ditches or wetlands. An additional problem is that breeding pools may be in-filled in large developments, so the animals will consciously be trying to locate them in the midst of construction work. If new ponds have been created as part of mitigation measures, fencing can be used not only to keep the turtles off site, but to direct them towards the new pools.

The time of year when this is a potential problem varies according to location. In Canada, for example, nesting activity begins at the start of April and extends through to early October, but in the southern United States turtles are active all year round. Additionally, gravelly or sandy substrates on development sites may be attractive to female turtles during the nesting season. According to the species, the eggs take up to 120 days to hatch. When the tiny young hatch, they dig to the surface and then often migrate to a hatch. When the tiny young hatch, they dig to the surface and then often migrate to a nearby water body. Having a soft carapace, young turtles are even more vulnerable to
crushing than are the adults. Construction machinery is every bit as much a threat as is passing traffic on a highway.

Fencing can also be used to aid population assessment before the development of new construction sites.

SMALL TURTLES: AMX 40
AMX 40 : BASIC MATERIAL SIZE \& FEATURES pg 42.

Free-standing

AMX 40 : BELOW GROUND pg. 44 AMX 40 : ABOVE GROUND pg. 46

Attached

AMX 40 : VARIOUS TYPES starting on pg. 48

LARGE TURTLES: AMX 48

AMX 48 : BASIC MATERIAL SIZE \& FEATURESpg. 58

Free-standing

AMX 48 : BELOW GROUND pg. 60 AMX 48 : ABOVE GROUND pg. 62

Attached

AMX 48 : VARIOUS TYPES starting on pg. 64

Fixing \& Fastening
AMX-T / AMX-SP : SCORED PLASTIC pg. 90 AMX-XP : PREFORMED METAL

Specifications:

Lizards

Lizard species are potentially at risk of becoming trapped in foundation trenches, pipework, or machinery on poorly fenced construction sites. Additionally, researchers in the United States have ranked 18% of lizard species at high or very high risk of becoming road-kill on highways. Lizards are susceptible to crushing by road traffic or earth-moving equipment because they are slow moving, do not avoid roads, and are simply too small equ privers to see and avoid since paved roads and surfaced areas on development for drivers to sean and sites typically absorb and retan more - like other reptiles - are often attracted to them for thermo-regulation, making the occurrence on these surfaces more frequent than their population would suggest.

The US researchers found that in California a few wide-ranging species are especially vulnerable to road-kill, including Flat-tailed horned lizard (Phrynosoma mccallii) and leopard lizards (genus Gambelia). For the former, this is particularly true because of their tendency to remain motionless while being approached by a vehicle.

It is the responsibility of planning engineers to reduce the ecological impact construction sites and roads have, and to use mitigation measures as tools in ecological conservation. Fencing, along with other mitigation measures, such as tunnels, has been shown to reduce construction site deaths and road-kill without disrupting the animals' life cycle, but it has to be the right kind of fencing or lizards will find a way through it or climb over it.

Fencing can also be used to aid population assessment before the development of new construction sites.

Species Examples:

- Blunt-nosed Leopard Lizard
- Viviparous Lizard
- Texas Horned Lizard
- Dunes Sagebrush lizard
- Desert Spiny Lizard

SMALL LIZARDS: AMX 40
AMX 40 : BASIC MATERIAL SIZE \& FEATURESpg. 42

Free-standing

AMX 40 : BELOW GROUND pg. 44 AMX 40 : ABOVE GROUND pg. 46

Attached

AMX 40 : VARIOUS TYPES starting on pg. 48

LARGE LIZARDS: AMX 48 AMX 48 : BASIC MATERIAL SIZE \& FEATURES pg. 58

Free-standing

AMX 48 : BELOW GROUND pg. 60 AMX 48 : ABOVE GROUND pg. 62

Attached AMX 48 : VARIOUS TYPES starting on pg. 64

Fixing \& Fastening
AMX-T / AMX-SP : SCORED PLASTIC pg. 90 AMX-XP : PREFORMED METALpg. 92

Specifications:

Frogs

The life cycle of frogs dictates that females lay their eggs in water. Some species live most of their lives in and around water and are relatively sedentary. Terrestrial frogs, however, live most of the time in other environments, such as forest, but still need to visit however, live most of the time in other environments, such as forest, but still need to V water to breed. They are more mobile than their aquatic counterparts and are prone to movements at the start and end of the breeding season. Therein lies a problem for conservationists. In spring, adults make their way to a favored poo, later peturning to the environment where they spend the rest of the year. Juveniles also move away from their natal pool to suitable terrestrial habitat; tens of thousands of froglets may migrate from a single pool in late summer.

If there is an artificial obstruction between the two environments - a construction site or a new road, for example - mortality will be greatly increased. Every year there will be two adult migrations and one juvenile migration across it - with resultant development site deaths and road-kill. New developments fragment habitats and obstruct migration routes. They often also involve the removal and relocation of breeding ponds; fencing can be used both to guide them away from development sites and towards newly constructed breeding ponds. Fencing can also be used to aid population assessment prior to any development.

It is the responsibility of planning engineers to reduce the ecological impact that construction sites and roads have, and to use mitigation measures as tools in ecological construction sites and roads have, and to use mitigation measures as tools in ecological shown to reduce deaths on construction sites and road-kill - without disrupting the shown to reduce deaths on construction sites and road-kill - without distupting the
animals' life cycle. But it has to be the right kind of fencing or frogs will climb over it, find animals life cycle. But it has to be the right kind

Species Examples:

- California Red-legged Frog
- European Pool Frog
- Pacific Tree Frog
- Northern Leopard Frog
- Growling Grass Frog

SMALL FROGS: AMX 40
amx 40 : BASIC MATERIAL SIZE \& FEATURES.....pg. 428

Free-standing

AMX 40 : BELOW GROUND pg. 44 AMX 40 : ABOVE GROUNDpg. 46

Attached

AMX 40 : VARIOUS TYPES starting on pg. 48

LARGE FROGS: AMX 60
AMX 60 : BASIC MATERIAL SIZE \& FEATURESpg. 74

Free-standing

AMX 60 : BELOW GROUND pg. 76 AMX 60 : ABOVE GROUND pg. 78

Attached

 AMX 60 : VARIOUS TYPES starting on pg. 80Fixing \& Fastening
AMX-T / AMX-SP : SCORED PLASTICpg. 90 AMX-XP : PREFORMED METALpg. 92

Specifications:
SMALL MAMMALS: AMX 40
AMX 40 : BASIC MATERIAL SIZE \& FEATURES pg. 428

Small Mammals

Small mammals wander in search of food, when looking for mates, as they disperse after the breeding season, and when seeking hibernation sites. Mortality is high on roads, railroads, and construction sites. In 1993, for example, 25 schools in New England participated in a road-kill study which recorded 1,923 animal deaths, of which 81% were mammals. If the estimate of 1 million animals killed daily on American roads is roughly accurate, several hundred thousand of these will be mammals. The additional number of those killed on construction sites has not been quantified, but machinery, heavy plant, trenches, and pipework are all major hazards for small mammals, which may become trapped or injured, or be killed

It is the responsibility of planning engineers to reduce the ecological impact construction sites and roads have and employ mitigation measures as tools in ecological conservation. Fencing, along with other mitigation measures such as tunnels, has been shown to reduce mortality without disrupting the animals' life cycle, but it has to be the right kind of fencing or small mammals will climb over it or find their way through it.

Additionally, there are many situations where farmers or horticulturists may wish to exclude mammals from their crops, hence the need for effective exclusion fencing

Fencing can also be used to aid population assessment before the development of new construction sites.

Species Examples:

Salt Marsh Harvest Mouse

- Kangaroo Rat Spp.
- Mohave Ground Squirrel
- European Watervole San Joaquin Kit Fox

Free-standing AMX 40 : BELOW GROUND pg. 44 AMX 40 : ABOVE GROUND pq. 46

Attached

AMX 40 : VARIOUS TYPES starting on pg. 48

LARGER MAMMALS: AMX 60 AMX 60 : BASIC MATERIAL SIZE \& FEATURES pg. 74

Free-standing

AMX 60 : BELOW GROUND pg. 76 AMX 60 : ABOVE GROUND pg. 78

Attached AMX 60 : VARIOUS TYPES starting on pg. 80

Fixing \& Fastening AMX-T / AMX-SP : SCORED PLASTICpg. 90 AMX-XP : PREFORMED METAL

AMX 40

Basic Material Size \& Features

The length of each AMX 40 section will vary depending on the material choice.
AMX 40 dimensions based on popular optimal fencing materials (pg16):

SCORED PLASTIC - PERFORATED \& NON-PERFORATED
(AMX-T) Temporary: 1-5 years
Thickness: $0.04 \mathrm{in} / 1 \mathrm{~mm}$
Length: $75 \mathrm{ft} / 22 \mathrm{~m}$
Weight: 50lbs / 23kg

SCORED PLASTIC - PERFORATED \& NON-PERFORATED
(AMX-SP) Semi-Permanent: Up to 15 years
Thickness: $0.08 \mathrm{in} / 2 \mathrm{~mm}$
Length: $35 \mathrm{ft} / 10 \mathrm{~m}$
Weight: 50lbs / 23 kg
PREFORMED METAL - PERFORATED \& NON-PERFORATED
(AMX-XP) Permanent: 30+ years / Lifetime solution
Thickness: 0.08in / 2 mm
Length: $8 \mathrm{ft} / 2.4 \mathrm{~m}$
Weight: 85lbs / 38kg

AMX 40 INSTALLED ABOVE GROUND HEIGHT: 22in / 550mm

Notes:

These dimensions are a guide and based on maximizing the amount of material that can be shipped economically and maneuvered on site in line with common health and safety guidelines. The exact lengths, thickness and weights may vary.

Material may be shipped in sheets or rolls depending on their length.
Customized options for alternative AMX40 barrier options are available from Animex ${ }^{\circledR}$ Fencing suppliers upon request. Other traditional fencing materials including posts and wire etc can be obtained from local suppliers or contractors.

AMX 40

Free-standing Below Ground

SECTION VIEW
NOT TO SCALE
*SUPPORT POSTS \& HORIZONTAL WIRE MAY NOT BE NEEDED FOR PREFORMED METAL (AMX-XP) FENCES
**HORIZONTAL WIRE MAY NOT BE NEEDED FOR TEMPORARY (AMX-T) FENCES

ELEVATION VIEW
NOT TO SCALE

AMX 40
Free-standing Above Ground

Free-standing Above Ground

APPLY THIS ABOVE GROUND METHOD WHEN ATTACHING TO EXISITING fence types As Well

*SUPPORT POSTS \& HORIZONTAL WIRE MAY NOT BE NEEDED FOR PREFORMED METAL (AMX-XP) FENCES
**Horizontal wire may not be needed for temporary (amx-t) fences

ELEVATION VIEW
NOT TO SCALE

AMX 40
Attached Garrison NOTES:
This specification should be used to a ad
installation. Measurements are accurate
but many eed tobe bedjustsed dependent
on location, onditions and local
authority reciomsendations. This specification should be used to aid
installation. Measarements are accurate
but may need to o adjusted deendent
on location, conditions and and local authority recommendations.

SECTION VIEW
NOT TO SCALE

AMX 40

Attached Chain-link

SECTION VIEW
NOT TO SCALE

NOTES
This specification should be used to aid
installation. Measurements are accurate
but may need to be adjusted dependent
on location, conditions and lo
authority recommendations.

SIDE TO BE ENCOUNTERED BY ANIMALS

This specification should noTES:
This specification should be used to aid
installation. Measurements are cacurate
but may need to beadiusted instalation. Measurements are accurate
but may need to beadjusted dependent
on location, conditions and local
authority recommendations.

AMX 40
Attached Chain-link
50 I the wild life fencing guide

AMX 40

Attached Livestock

SECTION VIEW
NOT TO SCALE

NOT TO SCALE

AMX 40

Attached Security

NOTES
This specification should be used to aid
installation. Measurements are accurate
but may need to be adiusted dependentent
on location conditions and
on location, conditions and loca
authority recommendations.

SIDE TO BE ENCOUNTERED BY ANIMALS

SECTION VIEW
NOT TO SCALE

AMX 40

Attached Large Wildlife

SECTION VIEW
NOT TO SCALE

$$
\begin{aligned}
& \text { on location, conditions and loca } \\
& \text { authority recommendations. }
\end{aligned}
$$

SIDE TO BE ENCOUNTERED BY ANIMALS

AMX 48

Basic Material Size \& Features

The length of each AMX 48 section will vary depending on the material choice.
AMX 48 dimensions based on popular optimal fencing materials (pg16):

SCORED PLASTIC - PERFORATED \& NON-PERFORATED
(AMX-T) Temporary: 1-5 years
Thickness: 0.04in / 1mm
Length: 60ft / 18.2 m
Weight: 50lbs / 23kg

SCORED PLASTIC - PERFORATED \& NON-PERFORATED
(AMX-SP) Semi-Permanent: Up to 15 years
Thickness: 0.08in / 2 mm
Length: $30 \mathrm{ft} / 9 \mathrm{~m}$
Weight: 50lbs / 23 kg

PREFORMED METAL - PERFORATED \& NON-PERFORATED
(AMX-XP) Permanent: 30+ years / Lifetime solution
Thickness: 0.08in / 2 mm
Length: $8 \mathrm{ft} / 2.4 \mathrm{~m}$
Weight: 991bs / 45kg

AMX 48 INSTALLED ABOVE GROUND HEIGHT: 30in / 750mm

Notes:

These dimensions are a guide and based on maximizing the amount of material that can be shipped economically and maneuvered on site in line with common health and safety guidelines. The exact lengths, thickness and weights may vary.

Material may be shipped in sheets or rolls depending on their length.
Customized options for alternative AMX48 barrier options are available from Animex ${ }^{\circledR}$ Fencing suppliers upon request. Other traditional fencing materials including posts and wire etc can be obtained from local suppliers or contractors.

AMX 48
Free-standing Below Ground

NOTES
This specification should be used to aid installation. Measurements are accurate but may need to be adjusted dependent on location, conditions and lo
authority recommendations.

SECTION VIEW
NOT TO SCALE
*SUPPORT POSTS \& HORIZONTAL WIRE MAY NOT BE NEEDED FOR PREFORMED METAL (AMX-XP) FENCES **HORIZONTAL WIRE MAY NOT BE NEEDED FOR TEMPORARY (AMX-T) FENCES

ELEVATION VIEW

NOT TO SCALE

AMX 48
Free-standing Above Ground

OP ANTI-CLIMB LIP COULD ALSO ANGLE DOWNWARD

NOT TO SCALE

SECTION VIEW

APPLY THIS ABOVE GROUND METHOD WHEN ATTACHING TO EXISTING FENCE TYPES AS WELL

*SUPPORT POSTS \& HORIZONTAL WIRE MAY NOT BE NEEDED FOR PREFORMED METAL (AMX-XP) FENCES
**HORIZONTAL WIRE MAY NOT BE NEEDED FOR TEMPORARY (AMX-T) FENCES

ELEVATION VIEW

NOT TO SCALE

AMX 48
Attached Garrison

NOTES
This specification should be used to aid installation. Measurements are accurate
int
but may need to bedict but may need to be adjusted dependent on location, conditions and lo
authority recommendations.

AMX 48

Attached Chain-link

SECTION VIEW
NOT TO SCALE

NOTES:
NOTES:
This specification should be used to aid
installation. Measurements are accurate
but many eed tobe bedjusted dependent
on location, conditions and local
on authority recommendations.

$$
\begin{aligned}
& \text { on location, conditions and loo } \\
& \text { authority recommendations. }
\end{aligned}
$$

SIDE TO BE ENCOUNTERED BY ANIMALS

AMX 48

Attached Livestock

SECTION VIEW
NOT TO SCALE

NOT TO SCALE

AMX 48

Attached Security

NOTES
This specification should be used to aid
installation
installation. Measurements sere accurate
but may need to be adiusted dol
but may need to be adjusted depen
on location, conditions and local
on location, conditions and lo
authority recommendations.

NOT TO SCALE

SECTION VIEW
NOT TO SCALE

AMX 48

Attached Large Wildlife

SECTION VIEW
NOT TO SCALE

$$
\begin{aligned}
& \text { on location, conditions and loca } \\
& \text { authority recommendations. }
\end{aligned}
$$

SIDE TO BE ENCOUNTERED BY ANIMALS

AMX 60

Basic Material Size \& Features

The length of each AMX $\mathbf{6 0}$ section will vary depending on the material choice.
AMX 60 dimensions based on popular optimal fencing materials (pg16):

SCORED PLASTIC - PERFORATED \& NON-PERFORATED
(AMX-T) Temporary: 1-5 years
Thickness: 0.04in / 1mm
Length: $50 \mathrm{ft} / 15 \mathrm{~m}$
Weight: 50lbs / 23kg

SCORED PLASTIC - PERFORATED \& NON-PERFORATED
(AMX-SP) Semi-Permanent: Up to 15 years
Thickness: 0.08in / 2 mm
Length: 20ft / 6 m
Weight: $501 \mathrm{lbs} / 23 \mathrm{~kg}$

PREFORMED METAL - PERFORATED \& NON-PERFORATED
(AMX-XP) Permanent: 30+ years / Lifetime solution
Thickness: 0.08in / 2 mm
Length: $8 \mathrm{ft} / 2.4 \mathrm{~m}$
Weight: 116lbs / 53kg

AMX 60 INSTALLED ABOVE GROUND HEIGHT: 42in / 1050mm

Notes:

These dimensions are a guide and based on maximizing the amount of material that can be shipped economically and maneuvered on site in line with common health and safety guidelines. The exact lengths, thickness and weights may vary.

Material may be shipped in sheets or rolls depending on their length.
Customized options for alternative AMX $\mathbf{6 0}$ barrier options are available from Animex ${ }^{\circledR}$ Fencing suppliers upon request. Other traditional fencing materials including posts and wire etc can be obtained from local suppliers or contractors.

[^0]AMX 60

AMX 60
Free-standing Below Ground
*SUPPORT POSTS \& HORIZONTAL WIRE MAY NOT BE NEEDED FOR PREFORMED METAL (AMX-XP) FENCES **HORIZONTAL WIRE MAY NOT BE NEEDED FOR TEMPORARY (AMX-T) FENCES

ELEVATION VIEW

NOT TO SCALE

AMX 60
Free-standing Above Ground

$$
\begin{aligned}
& \text { on location, conditions and log } \\
& \text { authority recommendations. }
\end{aligned}
$$

APPLY THIS ABOVE GROUND METHOD WHEN ATTACHING TO EXISTING FENCE TYPES AS WELL

*SUPPORT POSTS \& HORIZONTAL WIRE MAY NOT BE NEEDED FOR PREFORMED METAL (AMX-XP) FENCES
**HORIZONTAL WIRE MAY NOT BE NEEDED FOR TEMPORARY (AMX-T) FENCES

ELEVATION VIEW

NOT TO SCALE

AMX 60
Attached Garrison

SECTION VIEW
NOT TO SCALE

$$
\begin{aligned}
& \text { on location, conditions and lo, } \\
& \text { authority recommendations. }
\end{aligned}
$$

NOT TO SCALE

AMX 60

Attached Chain-link

SECTION VIEW
NOT TO SCALE

NOTES:
$\begin{aligned} & \text { This specification should be used to aid } \\ & \text { installation. Measurements are accurate }\end{aligned}$ This specification should be used to a aid
installation. Measurements are accurate
but may need to be adjusted dependent on location, conditions and local
authority recommendations.

NOTES
This specification should be used to aid
instalalatio
installation. Measurements sere accurate
but may need to be adiusted
but may need to be adjusted depend
on location, conditions and local
on location, conditions and lo
authority recommendations.

SIDE TO BE ENCOUNTERED BY ANIMALS

AMX 60

Attached Livestock

SECTION VIEW
NOT TO SCALE GROUND REFER TO: ABOVE GROUND PG. 79

Attached Livestock

AMX 60

Attached Security

SECTION VIEW
NOT TO SCALE

NOTES
This specification should be used to aid
installation. Measurements are accurate
but may need to be adiusted dependent
on location conditions and
on location, conditions and loca
authority recommendations.

SIDE TO BE ENCOUNTERED BY ANIMALS
 authority recommendations.

AMX 60

Attached Large Wildlife
TOP ANTI-CLIMB LIP COULD ALSO ANGLE DOWNWARD

$$
\left[\begin{array}{l}
\text { TOP "ANTI-CLIn } \\
\leftarrow 4 \mathrm{in} / 100 \mathrm{~mm}
\end{array}\right.
$$

ANIMEX ${ }^{\star}$ AMX 60
ALLED BARRIER HEIGHT
42in / 1050mm

$$
\begin{aligned}
& \text { on location, conditions and loc } \\
& \text { authority recommendations. }
\end{aligned}
$$

AMX 60
Attached Wild life

SIDE TO BE ENCOUNTERED BY ANIMALS

Fixings \& Fastening

Scored Plastic HDPE

AMX-T \& AMX-SP

Scored plastic (HDPE) sheets and rolls can expand when installed in places where there are large fluctuations in temperature. You should therefore avoid hard fixing this material as this can cause buckling and even open up gaps at overlapped or joining sections.

We have prepared some illustrations to demonstrate the best ways to connec and fasten scored plastic (HDPE) rolls and sheets

This technique helps to reduce the chances of gaps opening up at the joins and allows the fencing to expand and contract freely.

Ensuring the trench is backfilled correctly and the earth is compacted tightly against both sides of the fence is also essential to ensure there are no gaps at ground level where animals will be encountering the fence

Joins should be made between posts where possible
Adjust and adapt on site as required.

ATTACH TO POSTS
NOT TO SCALE
ATTACH TO WIRE
NOT TO SCALE
on location, conditions and lo
authority recommendations.

WEATHER PROOF ZIP-TIE OR WIRE \& WASHER

JOINING \& OVERLAPPING SECTIONS NOT TO SCALE

Fixings \& Fastening

Preformed Metal

NOTES
This specification should be used to aid installation. Measurements are accurate but may need to be adjusted dependent on location, condititions and loca

AMX-XP

Preformed metal fencing is supplied in sections that are often custom made for your project. The type of metal(s) used will also depend on the demands of your project

Each section slots inside the other and is then fastened by drilling holes through the overlapping sections and securing with bolts, nuts and washers.

Panels are commonly supplied in vertical or angled (one-way) variations.
End sections and turn-arounds will also be custom made per project and fitted on site.

Panels can be supplied with a powder-coating but this will increase costs and may require touch-ups after installation

ANGLED (ONE-WAY) EXAMPLE
NOT TO SCALE

VERTICLE JOINING EXAMPLE NOT TO SCALE

SECTION IV

Additional

Fencing
 Specifications
 \& Features

```
There are many projects where a standard fencing design or specification isn't suitable.
his is why we have designed some speciality installation nethods to suit alternative situations for roadside applications.
We have also provided details on additional features ncluding culvert attachements and one-way escape solutions.
f none of these specifications suit your needs or or they need to be adapted, please contact us and we will be nappy to design something for you-
```

Roadside Embankment pg.96 Roadside Guardrail pg. 98

Attaching to Crossings ${ }_{\text {pg.100 }}$ One-way Escapes ${ }_{\text {pg.102 }}$

$$
\begin{aligned}
& \text { on location, conditions and log } \\
& \text { authority recommendations. }
\end{aligned}
$$

Additional Fencing Specifications

Roadside Embankment
*AMX 40 Example

SECTION VIEW
NOT TO SCALE
*SUPPORT POSTS MAY NOT BE NEEDED FOR PRE-FORMED METAL (AMX-XP) FENCES

ELEVATION VIEW
NOT TO SCALE

Additional Fencing Specifications
 Roadside Guardrail

*AMX 40 Example

suo!!

$$
\begin{aligned}
& \text { on location, conditions and lo, } \\
& \text { authority recommendations. }
\end{aligned}
$$

ADJUSTMENTS CAN BE MADE TO FIT ALL ROADSIDE GUARDRAILS VARIATIONS

> ELEVATION VIEW- ANIMAL SIDE

NOT TO SCALE

Attaching to Crossing Structures

Various Examples

NOTES
This specification should be used to aid
installation. Measurements are accurte installation. Measurements are accurate
but may need to be adiusted dependent but may need to o ore ajjusted decennd
on location, conditions and local
on location, condititions and
authority recommendations.

When using fencing to guide wild ilfe to a crossing structure is it important to ensure the connection to the crossing structure is as sealed and secure as it can be. If there are any gaps there is a risk wildlife will be able to move around or over the crossing structure and the purpose of the fencing will be undermined at a vital location

It is useless having fencing if the connections to crossing strutures are not secure.
We recommend starting fencing installations at the crossing structure and working outwards. This will ensure the connection is secure. If fencing installations start away from crossing structures and work towards them there is a risk of material shortage and misaglignment, often creating difficulties that lead to patchy, problematic connections.

Key points to consider:

- Continue fencing over the top of structure
- Attach to inside of wingwalls
- Ensure no gaps

CIRCULAR EXAMPLE
NOT TO SCALE

BOX EXAMPLE
NOT TO SCALE

WINGWALL EXAMPLE
NOT TO SCALE

One-way Escapes

Various Examples

One way escapes are commonly used in temporary fencing applications to allow animals to passively escape areas before construction as part of surveys and translocations. Escapes are also used on permanent projects, especially linear infrastucture projects to mitigate the impacts of the fence end effect.

Unfortunately on linear projects fences often come to an end. Although we can design turn-arounds and fence layouts to mitigate this (details coming in a future chapter) there are frequent instances where animals are able to enter and encounter the wrong side of the fence and need a way to return to safety.

There are various ways one-way escapes have been used successfully and new methods are being developed and tested continually. Here we have presented some popular examples that have been successfully for reptiles, amphibians and small mammals across the world to date

The exact location, frequency, size and type will need to be pro-actively considered and adjusted to suit each project. There isn't a one size fits all solution.

Key points to consider:

- Size of opening / suitability / type used for differnet species \& situations
- Adding a cross-section to encourage movement through or over
- Using different types / variety on same fence line may help
- Keep flaps / doors clear of debris

NOTES

This specification should be used to aid
installation. Measurements sare NOT TO
installation. Measurumenents are NOT TO
SCALE and may need to be ediut SCALE and may need to be adjusted
dependent on location, conditions and local authority recommendations.

UPWARD SLOPED TUNNEL EXAMPLE

NATURAL SUBSTRATE RAMP EXAMPLE

One-way Escape Examples

CLEAR DOORWAY Roadside view in AMX-SP

CLEAR DOORWAY Koala escaping roadway

CLEAR DOORWAY
Habitat side view in AMX-SP

CLEAR DOORWAY Echidna escaping roadway

RAMP
Log ramp over AMX-SP

ANGLED INSTALLATION AMX-SP one-way installation

RAMP
Gravel ramp over AMX-SP

TUNNEL
Habitat side in AMX-T

SECTION V

Installation Maintenance Bibliography

This section provides guidence on how to install
and maintain fences along with a list of some of the documentation we have referenced to produce this fencing
\section*{INFORMATION TO BE ADDED TO FUTURE EDITIONS}
- Detailed shelter design
Monitoring protocol Fence-ends / Turn-aroun design
- Pitfall trap-line / Fence layouts
If you have anything to contrubite please get in touch:
info@wildlifefencing.com

Installation.

These basic step-by-step installation instructions are suitable for $\mathbf{A M X}$ - $\&$ AMX-SP materials AMX-XP may require a customized approach but the general principals are similar.

1) Clear vegetation along the fence line and work area.
2) Mark out the Animex fence line
3) Below Ground: Excavate trench. Ensure the trench is level and clear of large clumps or rocks Above Ground: Clear Ground. Ensure the ground is level and clear of large clumps or rocks
4) Free-Standing: Lay out posts and roll out Animex barrier (Fold bottom lip if required). Attached to exisiting fences: Roll out Animex barrier along fence (Fold bottom lip if required).
5) Install posts at the back of the trench using manual or machine powered post driver (Install horizontal wire if required and secure to end braces).
6) Place the Animex fence material into the trench with the lips facing towards the area that animals will encounter the fence.
7) Fasten the Animex to straining wire, posts or exisiting fence starting at the top and work down.
8) When attaching rolls overlap them following details on installation drawings. A minimum of 4 ties should be used on any joins in the fence.
9) Back fill the trench. Ensure the backfill is compact to eliminate gaps for animals to crawl through. Do the same on the back side of the fence.
10) Fasten the top lips and install any additional features such as one-way escapes or pitfall traps (if required).

MATERIALS

Required

- Animex Fencing
- Animex Washers
- UV Resistant Zip-ties or Fencing Wire
- Fence Posts

Optional

- 12 Gauge Straining Wire
- Fence end braces \& wire strainers
- Gripple Wire Joiners (or similar)
- Fence Post Safety Caps

AMX-SP attached to cattle fencing

TOOLS \& EQUIPMENT

Required

- Weed wacker / Whipper
- String Line \& Marker Pain
- Box Cutter / Stanley Knife
- Trencher / Excavator
- Spade / Trench / Shovel
- Post Diver / Sledge Hammer
- Battery Powered Drill
- Spade Drill Bit 3/4 (20mm)
- Cutting Pliers

Optional

- Shear Attachment For Drill (Trim Fence)
- Battery Powered Reciprocating Saw (Trim Posts)
- Drill Bit For Drainage Holes 1/8in (3mm)
- Gripple Tensioning Tool

Excavating trench for AMX-T

Maintenance.

For all Semi-Permanent and Permanent fencing we recommend an annual walk over (preferably in the spring soon after the thaw in areas with heavy snow fall) followed by additional visits to conduct vegetation maintenance as required. For Temporary fencing more frequent visits may be required based on site conditions, disturbance and seasonal animal movements.

Looking out for the following:

Vegetation

We suggest 1 or 2 vegetation cuts every year on both sides of the fence (Give priority to the side encountered by animals) using a weed whacker and wire (not blade). Increase the frequency if the fencing is used for temporary drift fencing or project area suffers from severe vegetation growth and particular seasonal movements of animals. This will prevent any animals from being able to use the vegetation as a ladder over the fences.

Gaps between fence sections

Tighten or add additional fixings to prevent the potential for animals to move through and breach fencing.

Horizontal wire tension

Check for any sagging or slack in the wire and tighten / re-fasten fence when required.

Post heave

Force fence posts back to correct depth using post rammer or hammer. If problem persists and heave was not accounted for during installation replace with longer posts

Broken Fixings

Replace any broken fixings / ties. Stainless steel bilts or ties are recommended for long term installations.

Washout / Scouring

Replace any backfill and consider digging drainage channels and / or manually adding additioanl drainage holes in fencing. If gaps are allowed to from under the fence animals will be able to use this to breach.

Tie-ins with culverts

Ensure no debris or damage has occurred to hinder the connections. This may result in animals being able to get onto the road.

Damage

If sections of fencing are damaged beyond repair (eg. vehicle collision) sections can be cut out and replaced at required intervals. It may be advantageous to have a couple of fence sections in storage so repairs can be made quickly. This will avoid prolonged periods where there is no fence in place leaving wild life vulnerable.

Vegetation growing \& entangled in plastic mesh

Animal burrow under plastic mesh

Gap opening between 2 sections of AMX-SP

Vegetation growing over AMX-SP

Gap between chainlink fencing \& culvert wing wall

Washer and plastic tie connecting AMX-T sections tightly

Vegetation cut in spring on both sides of AMX-SP

Clean AMX-SP connection to an under-road crossing

Additional metal strip added to sandwich AMX-SP sections

Bibliography.

The following is a selection of titles found useful during the preparation of this handbook.

[^1]Jackson, S.D. and T.F. Tyning. 1989. Effectiveness of drift fences and tunnels for moving Spotted Salamanders Ambystoma maculatum under roads. In: Amphibians and Roads. Proceedings of the Toad Tunnel Conference. T.E.S. Langton, editor ACO Polymer Products, Shefford, UK., pp. 93-99

Langton, T.E.S. and A.P. Clevenger. 2021. Measures to Reduce Road Impacts on Amphibians and Reptiles in California. Best Management Practices and Technical Guidance. Prepared by Western Transportation Institute for California Department of Transportation, Division of Research, Innovation and System Information
Langen, T.A. 2011. Design considerations and effectiveness of fencing for turtles: three case studies along northeastern New York State highways. In: Proceedings of the 2011 International Conference on Ecology and Transportation. P.J. Wagner, D. Nelson and E. Murray (editors). Center for Transportation and the Environment, North Carolina State University, Raleigh, N. C., pp. 521-532

Malt, J. 2012. Assessing the effectiveness of amphibian mitigation on the Sea to Sky Highway: population-level effects and bes management practices for minimizing highway impacts. Final report, Oct. 1, 2012. B.C. Ministry of Forests, Lands and Natural Resource Operations, Surrey, B.C
Ottburg, F.G.W.A., and E.A. van der Grift. 2013. Effectiveness of road mitigation for preserving a common toad population Proceedings of the 2013 International Conference on Ecology and Transportation. Poster.

Peaden, J.M., A.J. Nowakowski, T.D. Tuberville, K.A. Buhlmann, and B.D. Todd. 2017. Effects of roads and roadside fencing on movements, space use, and carapace temperatures of a threatened tortoise. Biological Conservation 214:13-22.

Ruby, DE, JR Spotila, SK Martin and SJ Kemp. 1994. Behavioral responses to barriers by desert tortoises: implications for wild life management. Herpetological Monographs 8:144-160
Woltz, H.W., J.P. Gibbs, and P.K. Ducey. 2008. Road crossing structures for amphibians and reptiles: informing design through behavioral analysis. Biological Conservation 141:2745-2750

Semlitsch, RD. 2008. Differentiating migration and dispersal processes for pond breeding amphibians. Journal of Wildlife Management 72(1): 260-267.

Ministry of Forests, Lands, and Natural Resource Operations, 2016. Best Management Practices for Amphibian and Reptile Salvages in British Columbia. Version 1.0., June 2, 2016.
Ministry of Environment and Climate Change Strategy, 2020. Guidelines for Amphibian and Reptile Conservation during Road Building and Maintenance Activities in British Columbia. Version 1.0., March 30, 2020.

Milburn-Rodríguez JC, J Hathaway, K Gunson, D Moffat, S Béga and D Swensson. 2016. Road mortality mitigation: The effectiveness of Animex fencing versus mesh fencing. https://animexfencing.com/why-animex

Ontario Ministry of Natural Resources and Forestry. April 2016. Best Management Practices for Mitigating the Effects of Roads on Amphibians and Reptile Species at Risk in Ontario. Queen's Printer for Ontario.
van der Ree, R, JW Gagnon and DJ Smith. 2015. Fencing: a valuable tool for reducing will lifevehicle collisions and funneling fauna to crossing structures. Handbook of Road Ecology. Oxford: John Wiley \& Sons, pp. 159-171.

Yorks DT, Sievert PR. 2015 Tunnel and Fencing Options for Reducing Road Mortalities of Freshwater Turtles. https://rosap.ntl.bts. gov/view/dot/36355

Catherine L. Proulx, Gabrielle Fortin, and Gabriel Blouin-Demers "Blanding's Turtles (Emydoidea blandingii) Avoid Crossing Unpaved and Paved Roads," Journal of Herpetology 48(2), 267-271, (1 June 2014). https://doi.org/10.1670/12-176
Laura E. Robson and Gabriel Blouin-Demers "Eastern Hognose Snakes (Heterodon platirhinos) Avoid Crossing Paved Roads, but Not Unpaved Roads," Copeia 20133), 507-511, (27 September 2013). https://doi.org/10.1643/CE-12-033
uell, B Bekker, GJ.J. Cuperus, R, Dufek J. Fry G. Hicks, C. Hlavác, V. Keller V, B, Rosell, C, Sanqwine T Torslov, "N Wandall B. le Maire, (Eds.) 2003. Wildlife and Traffic: A European Handbook for Identifying Conflicts and Designing Solutions.

[^0]: Basic Material Size \& Features

[^1]: Amphibian and Reptile Conservation. 2009 Common toads and roads: quidance for planners and highways engineers (England). Booklet, published by Amphibian and Reptile Conservation.

 Association of Wetland Stewards for Clayoquot and Barkley Sounds. 2014. New fences to guide amphibians to the tunnel. https:// splatfrogtunnel.blogspot.com/2014/08/new-fences-to-guide-amphibians-to-tunnel.html (Accessed Oct. 20, 2019).

 Aresco, M.J. 2005. Mitigation measures to reduce highway mortality of turtles and other herpetofauna at a north Florida lake. Journal of Wildlife Management 69:549-560
 Barton, Christopher \& Kinkead, Karen. (2005). Do erosion control and snakes mesh?. Journal of Soil and Water Conservation - J SOIL WATER CONSERV. 60.

 Baxter-Gilbert, JH, JL Riley, D Lesbarrères and JD Litzgus. 2015. Mitigating reptile road mortality: fence failures compromise ecopassage effectiveness. PLOS ONE 10(3), p.e0120537.

 Beasley, B. 2018a. Designing effective barriers to reduce road mortality and guide amphibians to crossing structures on Highway 4 on the west coast of Vancouver Island. Part 2: BACI design to test roadside HDPE fencing. Abstract and poster presented at the Herpetofauna and Roads Workshop II, B.C. Ministry of Environment, Kamloops, B. C., Sept. 21, 2018

 Brehme, CS and RN. Fisher. 2021. Research to Inform Caltrans Best Management Practices for Reptile and Amphibian Road Crossings. USGS Cooperator Report to California Department of Transportation, Division of Research, Innovation and System Information, 65A0553.

 Clevenger, AP and MP Huijser. 2011. Wildlife Crossing Structure Handbook, Design and Evaluation in North America, Publication No. FHWA-CFL/TD-11-003. Department of Transportation, Federal Highway Administration, Washington D.C., USA.
 Dodd, K.J., W.J. Barichivich, and L.L. Smith. 2004. Effectiveness of a barrier wall and culverts in reducing wildlife mortality on a heavily traveled highway in Florida. Biological Conservation 118:619-631.

 Fisher, R, D Stokes, C Rochester, C Brehme, S Hathaway and T Case. 2008. Herpetological monitoring using a pitfall trapping design in southern California. U.S. Geological Survey Techniques and Methods Vol. 2:A5. https://pubs.usgs.gov/tm/tm2a5/pdf/tm 2a5.pdif

 Gunson, KE, DC Seburn and D. Lesbarrères. 2014. Monitoring turtle movements on Highways 7 \& 41; 2012 and 2013. Final report submitted to the Ministry of Transportation, Kingston, Ontario.
 Hamer, AJ, TE Langton, and D Lesbarrères. 2015. Making a safe leap forward: mitigating road impacts on amphibians. Handbook of road ecology, Van Der Ree, R, DJ. Smith, and C Grilo (eds). Handbook of Road Ecology. John Wiley \& Sons, pp. 261-270.

 Helldin, J.O. and S.O. Petrovan. 2019. Effectiveness of small road tunnels and fences in reducing amphibian roadkill and barrier effects at retrofitted roads in Sweden. PeerJ 7:e7518. DOI: 10.7717/peerj.7518

 Hopkins, CB, JS Johnson, SR Kuchta, , DS McAvoy, VD Popescu, SC Porter, WM Roosenburg, GP Sisson, BR Sperry, MT Trainer and RL Wiley. 2018. Effectiveness of Wildlife Mitigation Treatments along the Nelsonville Bypass (No. FHWA/OH-2018-8).
 Hughes, D.F., Green, M.L., Warner, J.K. and Davidson, P.C. (2021), Evaluating Exclusion Barriers for Treefrogs in Agricultural Landscapes. Wiidl. Soc. Bull. https://doi.org/10.1002/wsb.1168

